S
Simon C
Member
The geometric distribution is said to have the memoryless property P(X > x + n|X > n) = P(X > x).
The proof for the Type 1 Geometric distribution is shown in the ActEd notes Chapter 4 page 7. I assumed this could also be proved for the Type 2 distribution but, on attempting it, I get P(X > x + n|X > n) = P(X > x – 1). For example, under the Type 2 basis I calculate that P(X > 2 + 4|X > 4) = P(X > 1).
I am fairly sure that my algebra is correct here, especially as the Type 2 distribution is "one out" from the Type 1 distribution. However I am struggling to interpret the meaning of this result or understand why P(X > x + n|X > n) = P(X > x) does not still apply in the Type 2 situation.
I calculate P(X <= x) to be 1 - q^x for the Type 1 distribution and 1 - q^(x + 1) for the Type 2 distribution. This gives P(X > x) as q^x for the Type 1 distribution and q^(x + 1) for the Type 2 distribution.
Please could someone let me know where my calculations have gone wrong or alternatively help me to interpret why the Type 2 result differs.
Thanks in advance for any help provided.
The proof for the Type 1 Geometric distribution is shown in the ActEd notes Chapter 4 page 7. I assumed this could also be proved for the Type 2 distribution but, on attempting it, I get P(X > x + n|X > n) = P(X > x – 1). For example, under the Type 2 basis I calculate that P(X > 2 + 4|X > 4) = P(X > 1).
I am fairly sure that my algebra is correct here, especially as the Type 2 distribution is "one out" from the Type 1 distribution. However I am struggling to interpret the meaning of this result or understand why P(X > x + n|X > n) = P(X > x) does not still apply in the Type 2 situation.
I calculate P(X <= x) to be 1 - q^x for the Type 1 distribution and 1 - q^(x + 1) for the Type 2 distribution. This gives P(X > x) as q^x for the Type 1 distribution and q^(x + 1) for the Type 2 distribution.
Please could someone let me know where my calculations have gone wrong or alternatively help me to interpret why the Type 2 result differs.
Thanks in advance for any help provided.