Harashima Senju
Ton up Member
How do you find the CDF of a double exponential distribution, I'm having problems with removing the absolute x
How do you find the CDF of a double exponential distribution, I'm having problems with removing the absolute x
You're given: \[g(x)= \frac{1}{2}\lambda e^{-\lambda\mid x\mid }\]
So for \[x\leqslant 0\]
\[g(x)=\frac{1}{2}\lambda e^{\lambda x}\]
We need to integrate to find the CDF:
So for \[ x\leqslant 0\]
\[G(x)=\int_{-\infty }^{x}\frac{1}{2}\lambda e^{\lambda t}dt = \frac{1}{2}e^ {\lambda x}\]
Now for \[x\geq 0\]
\[G(x)=P(x\leq 0)+\int_{0}^{x}\frac{1}{2}\lambda e^{-\lambda t}dt=\frac{1}{2}+\left [ -\frac{1}{2} e^{-\lambda t}\right ]_{0}^{x}=1-\frac{1}{2}e^{-\lambda x}\]